16 research outputs found

    The Impact of Road Configuration on V2V-based Cooperative Localization

    Full text link
    Cooperative localization with map matching has been shown to reduce Global Navigation Satellite System (GNSS) localization error from several meters to sub-meter level by fusing the GNSS measurements of four vehicles in our previous work. While further error reduction is expected to be achievable by increasing the number of vehicles, the quantitative relationship between the estimation error and the number of connected vehicles has neither been systematically investigated nor analytically proved. In this work, a theoretical study is presented that analytically proves the correlation between the localization error and the number of connected vehicles in two cases of practical interest. More specifically, it is shown that, under the assumption of small non-common error, the expected square error of the GNSS common error correction is inversely proportional to the number of vehicles, if the road directions obey a uniform distribution, or inversely proportional to logarithm of the number of vehicles, if the road directions obey a Bernoulli distribution. Numerical simulations are conducted to justify these analytic results. Moreover, the simulation results show that the aforementioned error decrement rates hold even when the assumption of small non-common error is violated

    Transferable Pedestrian Motion Prediction Models at Intersections

    Full text link
    One desirable capability of autonomous cars is to accurately predict the pedestrian motion near intersections for safe and efficient trajectory planning. We are interested in developing transfer learning algorithms that can be trained on the pedestrian trajectories collected at one intersection and yet still provide accurate predictions of the trajectories at another, previously unseen intersection. We first discussed the feature selection for transferable pedestrian motion models in general. Following this discussion, we developed one transferable pedestrian motion prediction algorithm based on Inverse Reinforcement Learning (IRL) that infers pedestrian intentions and predicts future trajectories based on observed trajectory. We evaluated our algorithm on a dataset collected at two intersections, trained at one intersection and tested at the other intersection. We used the accuracy of augmented semi-nonnegative sparse coding (ASNSC), trained and tested at the same intersection as a baseline. The result shows that the proposed algorithm improves the baseline accuracy by 40% in the non-transfer task, and 16% in the transfer task

    Scaling Up Multiagent Reinforcement Learning for Robotic Systems: Learn an Adaptive Sparse Communication Graph

    Full text link
    The complexity of multiagent reinforcement learning (MARL) in multiagent systems increases exponentially with respect to the agent number. This scalability issue prevents MARL from being applied in large-scale multiagent systems. However, one critical feature in MARL that is often neglected is that the interactions between agents are quite sparse. Without exploiting this sparsity structure, existing works aggregate information from all of the agents and thus have a high sample complexity. To address this issue, we propose an adaptive sparse attention mechanism by generalizing a sparsity-inducing activation function. Then a sparse communication graph in MARL is learned by graph neural networks based on this new attention mechanism. Through this sparsity structure, the agents can communicate in an effective as well as efficient way via only selectively attending to agents that matter the most and thus the scale of the MARL problem is reduced with little optimality compromised. Comparative results show that our algorithm can learn an interpretable sparse structure and outperforms previous works by a significant margin on applications involving a large-scale multiagent system
    corecore